C++17 New Features and Libraries
New Features
Template Argument Deduction for Class Templates
Automatic template argument deduction much like how it's done for functions, but now including class constructors.
|  | template <typename T = float>
struct MyContainer {
  T val;
  MyContainer() : val{} {}
  MyContainer(T val) : val{val} {}
  // ...
};
MyContainer c1 {1}; // OK MyContainer<int>
MyContainer c2; // OK MyContainer<float>
 | 
Declaring Non-type Template Parameters with auto
Following the deduction rules of auto, while respecting the non-type template parameter list of allowable types[*], template arguments can be deduced from the type ot its arguments:
|  | template <auto... seq>
struct my_integer_sequence {
  // Implementation here ...
};
// Explicitly pass type `int` as template argument.
auto seq = std::integer_sequence<int, 0, 1, 2>();
// Type is deduced to be `int`.
auto seq2 = my_integer_sequence<0, 1, 2>();
 | 
Folding Expressions
A fold expression performs a fold of a template parameter pack over a binary operator.
- An expression of the form (... op e)or(e op ...), whereopis a fold-operator andeis an unexpanded parameter pack, are called unary folds.
- An expression of the form (e1 op ... op e2), whereopare fold-operators, is called a binary fold. Eithere1ore2is an unexpanded parameter pack, but not both.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15 | template <typename... Args>
bool logicalAnd(Args... args) {
    // Binary folding.
    return (true && ... && args);
}
bool b = true;
bool& b2 = b;
logicalAnd(b, b2, true); // == true
template <typename... Args>
auto sum(Args... args) {
    // Unary folding.
    return (... + args);
}
sum(1.0, 2.0f, 3); // == 6.0
 | 
New Rules for auto Deduction from Braced-init-list
Changes to auto deduction when used with the uniform initialization syntax. Previously, auto x {3} deduced a std::initializer_list<int>, which now deduces to int.
|  | auto x1 {1, 2, 3};  // error: not a single element.
auto x2 = {1, 2, 3};  // x2 is std::initializer_list<int>
auto x3 {3};  // x3 is int
auto x4 {3.0};  // x4 is double
 | 
constexpr Lambda
Compile-time lambda using constexpr.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14 | auto identity = [](int n) constexpr { return n; };
static_assert(identity(123) == 123);
constexpr auto add = [](int x, int y) {
  auto L = [=] { return x; };
  auto R = [=] { return y; };
  return [=] { return L() + R(); };
};
static_assert(add(1, 2)() == 3);
constexpr int addOne(int n) {
  return [n] { return n + 1; }();
}
static_assert(addOne(1) == 2);
 | 
Lambda Capture this by Value
Capturing this in a lambda's environment was previously reference-only. An example of where this is problematic is asynchronous code using callbacks that require an object to be available, potentially past its lifetime. *this (C++17) will now make a copy of the current object, while this (C++11) continues to capture by reference.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15 | struct MyObj {
  int value {123};
  auto getValueCopy() {
    return [*this] { return value; };
  }
  auto getValueRef() {
    return [this] { return value; };
  }
};
MyObj mo;
auto valueCopy = mo.getValueCopy();
auto valueRef = mo.getValueRef();
mo.value = 321;
valueCopy(); // 123
valueRef(); // 321
 | 
Inline Variables
The inline specifier can be applied to variables as well as to functions. A variable declared inline has the same semantics as a function declared inline.
|  | // Disassembly example using compiler explorer.
struct S { int x; };
inline S x1 = S{321}; // mov esi, dword ptr [x1]
                      // x1: .long 321
S x2 = S{123};        // mov eax, dword ptr [.L_ZZ4mainE2x2]
                      // mov dword ptr [rbp - 8], eax
                      // .L_ZZ4mainE2x2: .long 123
 | 
|  | struct S {
  S() : id{count++} {}
  ~S() { count--; }
  int id;
  static inline int count{0}; // declare and initialize count to 0 within the class
};
 | 
Nested Namespaces
Using the namespace resolution operator to create nested namespace definitions.
|  | namespace A {
  namespace B {
    namespace C {
      int i;
    }
  }
}
// vs.
namespace A::B::C {
  int i;
}
 | 
Structured Bindings
A proposal for de-structuring initialization, that would allow writting auto [ x, y, z] = expr; where the type of expr was a tuple-like object, whose elements would be bound to the variables x, y and z(which is construc declares). tuple-like objects include std::tuple, std::pair, std::array, and aggregate structures.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18 | using Coordinate = std::pair<int, int>;
Coordinate origin() {
  return Coordinate{0, 0};
}
const auto [ x, y ] = origin();
x; // == 0
y; // == 0
std::unordered_map<std::string, int> mapping {
  {"a", 1},
  {"b", 2},
  {"c", 3}
};
// Destructure by reference.
for (const auto& [key, value] : mapping) {
  // Do something with key and value
}
 | 
Selection Statements with Initializer
New version of if and switch statements which simplify code patterns and help users keep scopes tight.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19 | {
  std::lock_guard<std::mutex> lk(mx);
  if (v.empty()) v.push_back(val);
}
// vs.
if (std::lock_guard<std::mutex> lk(mx); v.empty()) {
  v.push_back(val);
}
Foo gadget(args);
switch (auto s = gadget.status()) {
  case OK: gadget.zip(); break;
  case Bad: throw BadFoo(s.message());
}
// vs.
switch (Foo gadget(args); auto s = gadget.status()) {
  case OK: gadget.zip(); break;
  case Bad: throw BadFoo(s.message());
}
 | 
constexpr if
Write code that is instantiated depending on a compile=time condition.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13 | template <typename T>
constexpr bool isIntegral() {
  if constexpr (std::is_integral<T>::value) {
    return true;
  } else {
    return false;
  }
}
static_assert(isIntegral<int>() == true);
static_assert(isIntegral<char>() == true);
static_assert(isIntegral<double>() == false);
struct S {};
static_assert(isIntegral<S>() == false);
 | 
UTF-8 Character Literals
A character literal that begins with u8 is a character literal of type char. The value of a UTF-8 character literal is equal to its ISO 10646 code point value.
Direct List Initialization of Enums
Enums can now be initialized using braced syntax.
|  | enum byte : unsigned char {};
byte b {0}; // OK
byte c {-1}; // ERROR
byte d = byte{1}; // OK
byte e = byte{256}; // ERROR
 | 
fallthrough, nodiscard, maybe_unused attributes
C++17 introduces threee new attributes:
- 
[[fallthrough]]: indicates to the compiler that falling through in a switch statement is intended behavior.
 |  | switch (n) {
  case 1: [[fallthrough]]
    // ...
  case 2:
    // ...
    break;
}
 |  
 
- 
[[nodiscard]]: issues a warning when either a function or class has this attribute and its return value is discarded.
 |  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20 | [[nodiscard]] bool do_something() {
  return is_success; // true for success, false for failure
}
do_something(); // warning: ignoring return value of 'bool do_something()',
                // declared with attribute 'nodiscard'
// Only issues a warning when `error_info` is returned by value.
struct [[nodiscard]] error_info {
  // ...
};
error_info do_something() {
  error_info ei;
  // ...
  return ei;
}
do_something(); // warning: ignoring returned value of type 'error_info',
                // declared with attribute 'nodiscard'
 |  
 
- 
[[maybe_unused]]: indicates to be compiler that a variable or parameter might be unused an is intended.
 |  | void my_callback(std::string msg, [[maybe_unused]] bool error) {
  // Don't care if `msg` is an error message, just log it.
  log(msg);
}
 |  
 
New Libraries
std::variant
The class template std::variant represents a type-safe union. An instance of std::variant at any given time holds a value of one of its alternativqe types(it's possible for it to be valueless).
|  | std::variant<int, double> v{ 12 };
std::get<int>(v); // == 12
std::get<0>(v); // == 12
v = 12.0;
std::get<double>(v); // == 12.0
std::get<1>(v); // == 12.0
 | 
std::optional
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14 | std::optional<std::string> create(bool b) {
  if (b) {
    return "Godzilla";
  } else {
    return {};
  }
}
create(false).value_or("empty"); // == "empty"
create(true).value(); // == "Godzilla"
// optional-returning factory functions are usable as conditions of while and if
if (auto str = create(true)) {
  // ...
}
 | 
std::any
A type-safe container for single values of any type.
|  | std::any x {5};
x.has_value() // == true
std::any_cast<int>(x) // == 5
std::any_cast<int&>(x) = 10;
std::any_cast<int>(x) // == 10
 | 
std::string_view
A non-owning reference to a string. Useful for providing an abstraction on top of strings (e.g. for parsing).
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13 | // Regular strings.
std::string_view cppstr {"foo"};
// Wide strings.
std::wstring_view wcstr_v {L"baz"};
// Character arrays.
char array[3] = {'b', 'a', 'r'};
std::string_view array_v(array, std::size(array));
std::string str {"   trim me"};
std::string_view v {str};
v.remove_prefix(std::min(v.find_first_not_of(" "), v.size()));
str; //  == "   trim me"
v; // == "trim me"
 | 
std::invoke
Invoke a Callable object with parameters. Examples of Callable objects are std::function or std::bind where an object can be called similarly to a regular function.
|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16 | template <typename Callable>
class Proxy {
  Callable c;
public:
  Proxy(Callable c): c(c) {}
  template <class... Args>
  decltype(auto) operator()(Args&&... args) {
    // ...
    return std::invoke(c, std::forward<Args>(args)...);
  }
};
auto add = [](int x, int y) {
  return x + y;
};
Proxy<decltype(add)> p {add};
p(1, 2); // == 3
 | 
std::apply
Invoke a Callable object with a tuple of arguments
|  | auto add = [](int x, int y) {
  return x + y;
};
std::apply(add, std::make_tuple(1, 2)); // == 3
 | 
std::filesystem
The new std::filesystem library provides a standard way to manipulate files, directories, and paths in a filesystem.
|  | const auto bigFilePath {"bigFileToCopy"};
if (std::filesystem::exists(bigFilePath)) {
  const auto bigFileSize {std::filesystem::file_size(bigFilePath)};
  std::filesystem::path tmpPath {"/tmp"};
  if (std::filesystem::space(tmpPath).available > bigFileSize) {
    std::filesystem::create_directory(tmpPath.append("example"));
    std::filesystem::copy_file(bigFilePath, tmpPath.append("newFile"));
  }
}
 | 
std::byte
The new std::byte type provides a standard way of representing data as byte. Benefits of using std::byte over char or unsigned char is that it is not a character type, and is also not an arithmetic type; while the only operator overloads available are bitwise operator.
|  | std::byte a {0};
std::byte b {0xFF};
int i = std::to_integer<int>(b); // 0xFF
std::byte c = a & b;
int j = std::to_integer<int>(c); // 0
 | 
Splicing for Maps and Sets
Moving nodes and merging containers whithout the overhead of expensive copies, moves, or heap allocations/deallocations.
Moving elements from one map to another:
|  | std::map<int, string> src {{1, "one"}, {2, "two"}, {3, "buckle my shoe"}};
std::map<int, string> dst {{3, "three"}};
dst.insert(src.extract(src.find(1))); // Cheap remove and insert of { 1, "one" } from `src` to `dst`.
dst.insert(src.extract(2)); // Cheap remove and insert of { 2, "two" } from `src` to `dst`.
// dst == { { 1, "one" }, { 2, "two" }, { 3, "three" } };
 | 
|  | auto elementFactory() {
  std::set<...> s;
  s.emplace(...);
  return s.extract(s.begin());
}
s2.insert(elementFactory());
 | 
|  | std::map<int, string> m {{1, "one"}, {2, "two"}, {3, "three"}};
auto e = m.extract(2);
e.key() = 4;
m.insert(std::move(e));
// m == { { 1, "one" }, { 3, "three" }, { 4, "two" } }
 | 
Parallel Algorithms
Many of the STL algorithms, such as the copy, find and sort methods, started to support the parallel execution policies: seq, par and par_unseq which translate to "sequentially", "parallel" and "parallel unsequenced".
|  | std::vector<int> longVector;
// Find element using parallel execution policy
auto result1 = std::find(std::execution::par, std::begin(longVector), std::end(longVector), 2);
// Sort elements using sequential execution policy
auto result2 = std::sort(std::execution::seq, std::begin(longVector), std::end(longVector));
 |