Skip to content

Latex Equations Cheatsheet

Functions, Symbols, and Characters

Accents and Diacritics

Source Rendering
\dot{a}, \ddot{a}, \acute{a}, \grave{a} \(\dot{a}, \ddot{a}, \acute{a}, \grave{a}\)
\check{a}, \breve{a}, \tilde{a}, \bar{a} \(\check{a}, \breve{a}, \tilde{a}, \bar{a}\)
\hat{a}, \widehat{a}, \vec{a} \(\hat{a}, \widehat{a}, \vec{a}\)

Standard Numerical Functions

Source Rendering
\exp_a b = a^b, \exp b = e^b, 10^m \(\exp_a b = a^b, \exp b = e^b, 10^m\)
\ln c, \lg d = \log e, \log_{10} f \(\ln c, \lg d = \log e, \log_{10} f\)
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f \(\sin a, \cos b, \tan c, \cot d, \sec e, \csc f\)
\arcsin h, \arccos i, \arctan j \(\arcsin h, \arccos i, \arctan j\)
\sinh k, \cosh l, \tanh m, \coth n \(\sinh k, \cosh l, \tanh m, \coth n\)
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n \(\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n\)
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q \(\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q\)
\sgn r, \left\vert s \right\vert \(sgn r, \left\vert s \right\vert\)
\min(x,y), \max(x,y) \(\min(x,y), \max(x,y)\)

Bounds

Source Rendering
\min x, \max y, \inf s, \sup t \(\min x, \max y, \inf s, \sup t\)
\lim u, \liminf v, \limsup w \(\lim u, \liminf v, \limsup w\)
\dim p, \deg q, \det m, \ker\phi \(\dim p, \deg q, \det m, \ker\phi\)

Projections

Source Rendering
\Pr j, \hom l, \lVert z \rVert, \arg z \(\Pr j, \hom l, \lVert z \rVert, \arg z\)

Differentials and Derivatives

Source Rendering
dt, \mathrm{d}t, \partial t, \nabla\psi` \(dt, \mathrm{d}t, \partial t, \nabla\psi\)
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y` \(dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y\)
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y` \(\prime, \backprime, f^\prime, f', f'', f^{(3)} \!, \dot y, \ddot y\)

Letter-like Symbols or Constants

Source Rendering
\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar \(\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar\)
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA \(\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA\)

Modular Arithmetic

Source Rendering
s_k \equiv 0 \pmod{m} \(s_k \equiv 0 \pmod{m}\)
a \bmod b \(a \bmod b\)
\gcd(m, n), \operatorname{lcm}(m, n) \(\gcd(m, n), \operatorname{lcm}(m, n)\)
\mid, \nmid, \shortmid, \nshortmid \(\mid, \nmid, \shortmid, \nshortmid\)

Radicals

Source Rendering
\surd, \sqrt{2}, \sqrt[n]{2}, \sqrt[3]{\frac{x^3+y^3}{2}} \(\surd, \sqrt{2}, \sqrt[n]{2}, \sqrt[3]{\frac{x^3+y^3}{2}}\)

Operators

Source Rendering
+, -, \pm, \mp, \dotplus \(+, -, \pm, \mp, \dotplus\)
\times, \div, \divideontimes, /, \backslash \(\times, \div, \divideontimes, /, \backslash\)
\cdot, * \ast, \star, \circ, \bullet \(\cdot, * \ast, \star, \circ, \bullet\)
\boxplus, \boxminus, \boxtimes, \boxdot \(\boxplus, \boxminus, \boxtimes, \boxdot\)
\oplus, \ominus, \otimes, \oslash, \odot \(\oplus, \ominus, \otimes, \oslash, \odot\)
\circleddash, \circledcirc, \circledast \(\circleddash, \circledcirc, \circledast\)
\bigoplus, \bigotimes, \bigodot \(\bigoplus, \bigotimes, \bigodot\)

Sets

Source Rendering
\{ \}, \O \empty \emptyset, \varnothing \(\{ \}, \O \empty \emptyset, \varnothing\)
\in, \notin \not\in, \ni, \not\ni \(\in, \notin \not\in, \ni, \not\ni\)
\cap, \Cap, \sqcap, \bigcap \(\cap, \Cap, \sqcap, \bigcap\)
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus \(\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus\)
\setminus, \smallsetminus, \times \(\setminus, \smallsetminus, \times\)
\subset, \Subset, \sqsubset \(\subset, \Subset, \sqsubset\)
\supset, \Supset, \sqsupset \(\supset, \Supset, \sqsupset\)
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq \(\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq\)
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq \(\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq\)
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq \(\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq\)
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq \(\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq\)

Relations

Source Rendering
=, \ne, \neq, \equiv, \not\equiv \(=, \ne, \neq, \equiv, \not\equiv\)
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := \(\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=\)
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong \(\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong\)
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto \(\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto\)
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot \(<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot\)
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot \(>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot\)
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq \(\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq\)
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq \(\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq\)
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless \(\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless\)
\leqslant, \nleqslant, \eqslantless \(\leqslant, \nleqslant, \eqslantless\)
\geqslant, \ngeqslant, \eqslantgtr \(\geqslant, \ngeqslant, \eqslantgtr\)
\lesssim, \lnsim, \lessapprox, \lnapprox \(\lesssim, \lnsim, \lessapprox, \lnapprox\)
\gtrsim, \gnsim, \gtrapprox, \gnapprox \(\gtrsim, \gnsim, \gtrapprox, \gnapprox\)
\prec, \nprec, \preceq, \npreceq, \precneqq \(\prec, \nprec, \preceq, \npreceq, \precneqq\)
\succ, \nsucc, \succeq, \nsucceq, \succneqq \(\succ, \nsucc, \succeq, \nsucceq, \succneqq\)
\preccurlyeq, \curlyeqprec \(\preccurlyeq, \curlyeqprec\)
\succcurlyeq, \curlyeqsucc \(\succcurlyeq, \curlyeqsucc\)
\precsim, \precnsim, \precapprox, \precnapprox \(\precsim, \precnsim, \precapprox, \precnapprox\)
\succsim, \succnsim, \succapprox, \succnapprox \(\succsim, \succnsim, \succapprox, \succnapprox\)

Geometric

Source Rendering
\parallel, \nparallel, \shortparallel, \nshortparallel \(\parallel, \nparallel, \shortparallel, \nshortparallel\)
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ \(\perp, \angle, \sphericalangle, \measuredangle, 45^\circ\)
\Box, \square, \blacksquare, \diamond, \Diamond, \lozenge, \blacklozenge, \bigstar \(\Box, \square, \blacksquare, \diamond, \Diamond, \lozenge, \blacklozenge, \bigstar\)
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown \(\bigcirc, \triangle, \bigtriangleup, \bigtriangledown\)
\vartriangle, \triangledown \(\vartriangle, \triangledown\)
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright \(\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright\)

Logic

Source Rendering
\forall, \exists, \nexists \(\forall, \exists, \nexists\)
\therefore, \because, \And \(\therefore, \because, \And\)
\lor \vee, \curlyvee, \bigvee don't use \or which is now deprecated
\(\lor, \vee, \curlyvee, \bigvee\)
\land \wedge, \curlywedge, \bigwedge don't use \and which is now deprecated \(\land, \wedge, \curlywedge, \bigwedge\)
\bar{q}, \bar{abc}, \overline{q}, \overline{abc}, \lnot \neg, \not\operatorname{R}, \bot, \top \(\bar{q}, \bar{abc}, \overline{q}, \overline{abc}, \lnot \neg, \not\operatorname{R}, \bot, \top\)
\vdash \dashv, \vDash, \Vdash, \models \(\vdash, \dashv, \vDash, \Vdash, \models\)
\Vvdash \nvdash \nVdash \nvDash \nVDash \(\Vvdash, \nvdash, \nVdash, \nvDash, \nVDash\)
\ulcorner \urcorner \llcorner \lrcorner \(\ulcorner \urcorner \llcorner \lrcorner\)

Arrows

Source Rendering
\Rrightarrow, \Lleftarrow \(\Rrightarrow, \Lleftarrow\)
\Rightarrow, \nRightarrow, \Longrightarrow, \implies \(\Rightarrow, \nRightarrow, \Longrightarrow, \implies\)
\Leftarrow, \nLeftarrow, \Longleftarrow \(\Leftarrow, \nLeftarrow, \Longleftarrow\)
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow, \iff \(\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow, \iff\)
\Uparrow, \Downarrow, \Updownarrow \(\Uparrow, \Downarrow, \Updownarrow\)
\rightarrow \to, \nrightarrow, \longrightarrow \(\rightarrow \to, \nrightarrow, \longrightarrow\)
\leftarrow \gets, \nleftarrow, \longleftarrow \(\leftarrow \gets, \nleftarrow, \longleftarrow\)
\leftrightarrow, \nleftrightarrow, \longleftrightarrow \(\leftrightarrow, \nleftrightarrow, \longleftrightarrow\)
\uparrow, \downarrow, \updownarrow \(\uparrow, \downarrow, \updownarrow\)
\nearrow, \swarrow, \nwarrow, \searrow \(\nearrow, \swarrow, \nwarrow, \searrow\)
\mapsto, \longmapsto \(\mapsto, \longmapsto\)
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \(\rightharpoonup, \rightharpoondown, \leftharpoonup, \leftharpoondown, \upharpoonleft, \upharpoonright, \downharpoonleft, \downharpoonright, \rightleftharpoons, \leftrightharpoons\)
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright \(\curvearrowleft, \circlearrowleft, \Lsh, \upuparrows, \rightrightarrows, \rightleftarrows, \rightarrowtail, \looparrowright\)
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft \(\curvearrowright, \circlearrowright, \Rsh, \downdownarrows, \leftleftarrows, \leftrightarrows, \leftarrowtail, \looparrowleft\)
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow \(\hookrightarrow, \hookleftarrow, \multimap, \leftrightsquigarrow, \rightsquigarrow, \twoheadrightarrow, \twoheadleftarrow\)

Special

Source Rendering
\amalg \P \S \% \dagger \ddagger \ldots \cdots \(\amalg \P \S \% \dagger \ddagger \ldots \cdots\)
\smile \frown \wr \triangleleft \triangleright \(\smile \frown \wr \triangleleft \triangleright\)
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp \(\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp\)

Unsorted (new stuff)

Source Rendering
\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes \(\diagup, \diagdown, \centerdot, \ltimes, \rtimes, \leftthreetimes, \rightthreetimes\)
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq \(\eqcirc, \circeq, \triangleq, \bumpeq, \Bumpeq, \doteqdot, \risingdotseq, \fallingdotseq\)
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork \(\intercal, \barwedge, \veebar, \doublebarwedge, \between, \pitchfork\)
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright \(\vartriangleleft, \ntriangleleft, \vartriangleright, \ntriangleright\)
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq \(\trianglelefteq, \ntrianglelefteq, \trianglerighteq, \ntrianglerighteq\)

Expressions

Source Rendering
a^2, a^{x+3} \(a^2, a^{x+3}\)
a_2 \(a_2\)
10^{30} a^{2+2} \(10^{30} a^{2+2}\)
a_{i,j} b_{f'} \(a_{i,j} b_{f'}\)
x_2^3 \(x_2^3\)
{x_2}^3 \({x_2}^3\)
10^{10^{8}} \(10^{10^{8}}\)
\sideset{_1^2}{_3^4}\prod_a^b \(\sideset{_1^2}{_3^4}\prod_a^b\)
{}_1^2\!\Omega_3^4 \({}_1^2\!\Omega_3^4\)
\overset{\alpha}{\omega} \(\overset{\alpha}{\omega}\)
\underset{\alpha}{\omega} \(\underset{\alpha}{\omega}\)
\overset{\alpha}{\underset{\gamma}{\omega}} \(\overset{\alpha}{\underset{\gamma}{\omega}}\)
\stackrel{\alpha}{\omega} \(\stackrel{\alpha}{\omega}\)
x', y'', f', f'' \(x', y'', f', f''\)
x^\prime, y^{\prime\prime} \(x^\prime, y^{\prime\prime}\)
\dot{x}, \ddot{x} \(\dot{x}, \ddot{x}\)
\hat a \bar b \vec c \(\hat a \bar b \vec c\)
\overrightarrow{a b} \overleftarrow{c d} \widehat{d e f} \(\overrightarrow{a b} \overleftarrow{c d} \widehat{d e f}\)
\overline{g h i} \underline{j k l} \(\overline{g h i} \ \underline{j k l}\)
\overset{\frown} {AB} \(\overset{\frown} {AB}\)
A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C \(A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C\)
\overbrace{ 1+2+\cdots+100 }^{5050} \(\overbrace{ 1+2+\cdots+100 }^{5050}\)
\underbrace{ a+b+\cdots+z }_{26} \(\underbrace{ a+b+\cdots+z }_{26}\)
\sum_{k=1}^N k^2 \(\sum_{k=1}^N k^2\)
\textstyle \sum_{k=1}^N k^2 \(\textstyle \sum_{k=1}^N k^2\)
\frac{\sum_{k=1}^N k^2}{a} \(\frac{\sum_{k=1}^N k^2}{a}\)
\frac{\displaystyle \sum_{k=1}^N k^2}{a} \(\frac{\displaystyle \sum_{k=1}^N k^2}{a}\)
\frac{\sum\limits^{^N}_{k=1} k^2}{a} \(\frac{\sum\limits^{^N}_{k=1} k^2}{a}\)
\prod_{i=1}^N x_i \(\prod_{i=1}^N x_i\)
\textstyle \prod_{i=1}^N x_i \(\textstyle \prod_{i=1}^N x_i\)
\coprod_{i=1}^N x_i \(\coprod_{i=1}^N x_i\)
\textstyle \coprod_{i=1}^N x_i \(\textstyle \coprod_{i=1}^N x_i\)
\lim_{n \to \infty}x_n \(\lim_{n \to \infty}x_n\)
\textstyle \lim_{n \to \infty}x_n \(\textstyle \lim_{n \to \infty}x_n\)
\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx \(\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx\)
\int_{1}^{3}\frac{e^3/x}{x^2}\, dx \(\int_{1}^{3}\frac{e^3/x}{x^2}\, dx\)
\textstyle \int\limits_{-N}^{N} e^x dx \(\textstyle \int\limits_{-N}^{N} e^x dx\)
\textstyle \int_{-N}^{N} e^x dx \(\textstyle \int_{-N}^{N} e^x dx\)
\iint\limits_D dx\,dy \(\iint\limits_D dx\,dy\)
\iiint\limits_E dx\,dy\,dz \(\iiint\limits_E dx\,dy\,dz\)
\iiiint\limits_F dx\,dy\,dz\,dt \(\iiiint\limits_F dx\,dy\,dz\,dt\)
\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy \(\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy\)
\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy \(\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy\)
\bigcap_{i=1}^n E_i \(\bigcap_{i=1}^n E_i\)
\bigcup_{i=1}^n E_i \(\bigcup_{i=1}^n E_i\)

Display Attribute

Fractions, Matrices, Multilines

Source Rendering
\frac{2}{4}=0.5 or {2 \over 4}=0.5 \(\frac{2}{4}=0.5\)
\tfrac{2}{4} = 0.5 \(\tfrac{2}{4} = 0.5\)
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a \(\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a\)
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \(\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a\)
\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2} \(\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2}\)
\binom{n}{k} \(\binom{n}{k}\)
\tbinom{n}{k} \(\tbinom{n}{k}\)
\dbinom{n}{k} \(\dbinom{n}{k}\)
\begin{matrix} x & y \\ z & v \end{matrix} \(\begin{matrix} x & y \\ z & v \end{matrix}\)
\begin{vmatrix} x & y \\ z & v \end{vmatrix} \(\begin{vmatrix} x & y \\ z & v \end{vmatrix}\)
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} \(\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}\)
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \(\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}\)
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} \(\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}\)
\begin{pmatrix} x & y \\ z & v \end{pmatrix} \(\begin{pmatrix} x & y \\ z & v \end{pmatrix}\)
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) \(\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)\)
f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} \(f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases}\)
\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} \(\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}\)
\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} \(\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}\)
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} \(\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat}\)
\begin{align} f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\ & = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\ \end{align} \(\begin{align} f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\ & = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\ \end{align}\)
\begin{alignat}{3} f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\ & = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\ \end{alignat} \(\begin{alignat}{3} f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\ & = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\ \end{alignat}\)
\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} \(\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}\)
\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} \(\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}\)
\begin{alignat}{4} F:\; && C(X) && \;\to\; & C(X) \\ && g && \;\mapsto\; & g^2 \end{alignat} \(\begin{alignat}{4} F:\; && C(X) && \;\to\; & C(X) \\ && g && \;\mapsto\; & g^2 \end{alignat}\)
\begin{alignat}{4} F:\; && C(X) && \;\to\; && C(X) \\ && g && \;\mapsto\; && g^2 \end{alignat} \(\begin{alignat}{4} F:\; && C(X) && \;\to\; && C(X) \\ && g && \;\mapsto\; && g^2 \end{alignat}\)
\begin{array}{|c|c|c|} a & b & S \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array} \(\begin{array}{\|c\|c\|c\|} a & b & S \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}\)

Parenthesizing Big Expressions, Brackets, Bars

Source Rendering
\left ( \frac{a}{b} \right ) \(\left ( \frac{a}{b} \right )\)
\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack \(\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack\)
\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace \(\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace\)
\left \langle \frac{a}{b} \right \rangle \(\left \langle \frac{a}{b} \right \rangle\)
\left | \frac{a}{b} \right \vert \quad \left \Vert \frac{c}{d} \right \| $\left
\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil \(\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil\)
\left / \frac{a}{b} \right \backslash \(\left / \frac{a}{b} \right \backslash\)
\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow \(\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow\)
\left [ 0,1 \right ) \left \langle \psi \right | \(\left [ 0,1 \right )\)
\left . \frac{A}{B} \right \} \to X \(\left . \frac{A}{B} \right \} \to X\)
( \bigl( \Bigl( \biggl( \Biggl( \dots \Biggr] \biggr] \Bigr] \bigr] ] \(( \bigl( \Bigl( \biggl( \Biggl( \dots \Biggr] \biggr] \Bigr] \bigr] ]\)
\{ \bigl\{ \Bigl\{ \biggl\{ \Biggl\{ \dots \Biggr\rangle \biggr\rangle \Bigr\rangle \bigr\rangle \rangle \(\{ \bigl\{ \Bigl\{ \biggl\{ \Biggl\{ \dots \Biggr\rangle \biggr\rangle \Bigr\rangle \bigr\rangle \rangle\)
\| \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg\| \bigg\| \Big\| \big\| \| \(\| \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg\| \bigg\| \Big\| \big\| \|\)
\lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots \Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \ceil \(\lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots \Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \rceil\)
\uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow \(\uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow\)
\updownarrow \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow \Updownarrow \(\updownarrow \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow \Updownarrow\)
/ \big/ \Big/ \bigg/ \Bigg/ \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \backslash \(/ \big/ \Big/ \bigg/ \Bigg/ \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \backslash\)

Alphabets and Typefaces

Greek Alphabet

Source Rendering
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \(\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta\)
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \(\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi\)
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \(\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega\)
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta\)
\iota \kappa \lambda \mu \nu \xi \omicron \pi \(\iota \kappa \lambda \mu \nu \xi \omicron \pi\)
\rho \sigma \tau \upsilon \phi \chi \psi \omega \(\rho \sigma \tau \upsilon \phi \chi \psi \omega\)
\varGamma \varDelta \varTheta \varLambda \varXi \varPi \varSigma \varPhi \varUpsilon \varOmega \(\varGamma \varDelta \varTheta \varLambda \varXi \varPi \varSigma \varPhi \varUpsilon \varOmega\)
\varepsilon \digamma \varkappa \varpi \varrho \varsigma \vartheta \varphi \(\varepsilon \digamma \varkappa \varpi \varrho \varsigma \vartheta \varphi\)

Hebrew Symbols

Source Rendering
\aleph \beth \gimel \daleth \(\aleph \beth \gimel \daleth\)

Blackboard Bold/Scripts

Source Rendering
\mathbb{ABCDEFGHI} \(\mathbb{ABCDEFGHI}\)
\mathbb{JKLMNOPQR} \(\mathbb{JKLMNOPQR}\)
\mathbb{STUVWXYZ} \(\mathbb{STUVWXYZ}\)

Boldface

Source Rendering
\mathbf{ABCDEFGHI} \(\mathbf{ABCDEFGHI}\)
\mathbf{JKLMNOPQR} \(\mathbf{JKLMNOPQR}\)
\mathbf{STUVWXYZ} \(\mathbf{STUVWXYZ}\)
\mathbf{abcdefghijklm} \(\mathbf{abcdefghijklm}\)
\mathbf{nopqrstuvwxyz} \(\mathbf{nopqrstuvwxyz}\)
\mathbf{0123456789} \(\mathbf{0123456789}\)

Boldface (Greek)

Source Rendering
\boldsymbol{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \(\boldsymbol{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}\)
\boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} \(\boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi}\)
\boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} \(\boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\)
\boldsymbol{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta} \(\boldsymbol{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta}\)
\boldsymbol{\iota \kappa \lambda \mu \nu \xi \omicron \pi} \(\boldsymbol{\iota \kappa \lambda \mu \nu \xi \omicron \pi}\)
\boldsymbol{\rho \sigma \tau \upsilon \phi \chi \psi \omega} \(\boldsymbol{\rho \sigma \tau \upsilon \phi \chi \psi \omega}\)
\boldsymbol{\varepsilon\digamma\varkappa\varpi} \(\boldsymbol{\varepsilon\digamma\varkappa\varpi}\)
\boldsymbol{\varrho\varsigma\vartheta\varphi} \(\boldsymbol{\varrho\varsigma\vartheta\varphi}\)

Italics (default for Latin alphabet)

Source Rendering
\mathit{0123456789} \(\mathit{0123456789}\)

Greek Italics (default for lowercase Greek)

Source Rendering
\mathit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \(\mathit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}\)
\mathit{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} \(\mathit{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi}\)
\mathit{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} \(\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\)

Greek Uppercase Boldface Italics

Source Rendering
\boldsymbol{\varGamma \varDelta \varTheta \varLambda} \(\boldsymbol{\varGamma \varDelta \varTheta \varLambda}\)
\boldsymbol{\varXi \varPi \varSigma \varUpsilon \varOmega} \(\boldsymbol{\varXi \varPi \varSigma \varUpsilon \varOmega}\)

Roman Typeface

Source Rendering
\mathrm{ABCDEFGHI} \(\mathrm{ABCDEFGHI}\)
\mathrm{JKLMNOPQR} \(\mathrm{JKLMNOPQR}\)
\mathrm{STUVWXYZ} \(\mathrm{STUVWXYZ}\)
\mathrm{abcdefghijklm} \(\mathrm{abcdefghijklm}\)
\mathrm{nopqrstuvwxyz} \(\mathrm{nopqrstuvwxyz}\)
\mathrm{0123456789} \(\mathrm{0123456789}\)

Sans Serif

Source Rendering
\mathsf{ABCDEFGHI} \(\mathsf{ABCDEFGHI}\)
\mathsf{JKLMNOPQR} \(\mathsf{JKLMNOPQR}\)
\mathsf{STUVWXYZ} \(\mathsf{STUVWXYZ}\)
\mathsf{abcdefghijklm} \(\mathsf{abcdefghijklm}\)
\mathsf{nopqrstuvwxyz} \(\mathsf{nopqrstuvwxyz}\)
\mathsf{0123456789} \(\mathsf{0123456789}\)

Sans Serif Greek (capital only)

Source Rendering
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \(\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}\)
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} \(\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi}\)
\mathsf{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} \(\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\)

Calligraphy/Script

Source Rendering
\mathcal{ABCDEFGHI} \(\mathcal{ABCDEFGHI}\)
\mathcal{JKLMNOPQR} \(\mathcal{JKLMNOPQR}\)
\mathcal{STUVWXYZ} \(\mathcal{STUVWXYZ}\)
\mathcal{abcdefghi} \(\mathcal{abcdefghi}\)
\mathcal{jklmnopqr} \(\mathcal{jklmnopqr}\)
\mathcal{stuvwxyz} \(\mathcal{stuvwxyz}\)

Fraktur Typeface

Source Rendering
\mathfrak{ABCDEFGHI} \(\mathfrak{ABCDEFGHI}\)
\mathfrak{JKLMNOPQR} \(\mathfrak{JKLMNOPQR}\)
\mathfrak{STUVWXYZ} \(\mathfrak{STUVWXYZ}\)
\mathfrak{abcdefghijklm} \(\mathfrak{abcdefghijklm}\)
\mathfrak{nopqrstuvwxyz} \(\mathfrak{nopqrstuvwxyz}\)
\mathfrak{0123456789} \(\mathfrak{0123456789}\)

Small Scriptstyle Text

Source Rendering
{\scriptstyle\text{abcdefghijklm}} \({\scriptstyle\text{abcdefghijklm}}\)

Mixed Text Faces

Source Rendering
x y z \(x y z\)
\text{x y z} \(\text{x y z}\)
\text{if} n \text{is even} \(\text{if} n \text{is even}\)
\text{if }n\text{ is even} \(\text{if }n\text{ is even}\)
\text{if}~n\ \text{is even} \(\text{if}~n\ \text{is even}\)

Color

Equations can use color with the \color command. For example:

-{\color{Blue}x^2}+{\color{Orange}2x}-{\color{LimeGreen}1}

\[ {\color{Blue}x^2}+{\color{Orange}2x}-{\color{LimeGreen}1} \]
  • x_{1,2}=\frac{{\color{Blue}-b}\pm\sqrt{\color{Red}b^2-4ac}}{\color{Green}2a }
\[ x_{1,2}=\frac{{\color{Blue}-b}\pm\sqrt{\color{Red}b^2-4ac}}{\color{Green}2a} \]

There are several alternate notations styles

  • {\color{Blue}x^2}+{\color{Orange}2x}-{\color{LimeGreen}1} works with both texvc and MathJax
\[ {\color{Blue}x^2}+{\color{Orange}2x}-{\color{LimeGreen}1} \]
  • \color{Blue}x^2\color{Black}+\color{Orange}2x\color{Black}-\color{LimeGreen}1 works with both texvc and MathJax
\[ \color{Blue}x^2\color{Black}+\color{Orange}2x\color{Black}-\color{LimeGreen}1 \]
  • \color{Blue}{x^2}+\color{Orange}{2x}-\color{LimeGreen}{1} only works with MathJax
\[ \color{Blue}{x^2}+\color{Orange}{2x}-\color{LimeGreen}{1} \]

Formatting Issures

Spacing

Source Rendering
a \qquad b \(a \qquad b\)
a \quad b \(a \quad b\)
a\ b \(a\ b\)
a \text{ } b \(a \text{ } b\)
a\;b \(a\;b\)
a\,b \(a\,b\)
ab \(ab\)
a b \(a b\)
\mathit{ab} \(\mathit{ab}\)
a\!b \(a\!b\)

Reference